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Abstract 
This paper studies the possible effects of automated driving on population concentration and dispersion and 
on welfare in the Netherlands. We performed simulations using LUCA, the Dutch spatial general equilibrium 
model. Our simulations account for two possible effects of automation: (i) self-driving cars allow drivers to 
use their time in the car more productively; and (ii) self-driving public transit offers faster and more 
comfortable door-to-door transfers than traditional buses, trams and metros. We find that more productive 
time use during car trips results in population flight from cities. The fast and inexpensive automated public 
transit has the opposite effect: it leads to further population clustering in urban areas. A combination of these 
two components may result in the population concentrating in the largest, most attractive cities and their 
suburbs, at the expense of smaller cities and non-urban regions. The simulations suggest that welfare 
benefits due to population relocation and changes in land use may equal up to 10% of the total welfare 
effects of automation. Our results are particularly relevant for countries where public transit claims a 
considerable share of urban mobility. Neglecting the impact of vehicle automation on public transit could 
result in biased policy recommendations. 
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1 Introduction 
Automated and autonomous driving will radically change the travel experience and likely have far-reaching 
consequences for mobility patterns, population distribution and land use. Self-driving cars – which we term 
Privately-Ridden Automated Vehicles (PAV) – relieve their occupants of the burden of driving, allowing them 
to spend the travel time on other activities, like working or relaxing.2 PAV enhances the travel experience 
and may lead to longer commutes, population suburbanization and land use dispersion (Anderson et al., 
2014, Heinrichs, 2016, Bansal et al., 2016, Zakharenko, 2016, Meyer et al., 2017, Litman, 2018). Automated 
transit – which we term Shared-Ride Automated Vehicles (SAV) – provides shared door-to-door rides and 
offers savings in access, egress and waiting time, as compared to conventional transit. Being inexpensive, fast 
and demand-responsive, especially in densely populated areas3, SAV may replace buses, trams and some 
metro lines (KiM, 2015, ITF/OECD, 2015, 2017a, 2017b, Yap et al., 2016, Chen and Kockelman, 2016, Stocker 
and Shaheen, 2017). This could lead to cities becoming more attractive and to concentration of land use. 4 5 
The discussed trends in, and consequences of, automation have been examined separately in other papers. 
However, this study is the first to analyze them within a single formalized framework, which allows to 
examine both the spatial and the welfare effects of the automation.  
 
This paper applies LUCA,6 the Dutch spatial general equilibrium model, to study the possible effects of vehicle 
automation on population concentration and dispersion. We compute shifts in the location of homes and 
jobs, commuting patterns, land prices and welfare for a densely populated country, the Netherlands. We 
account for two possible automation developments: car automation, whereby technology enhances the 
travel experience in PAV; and public transit automation, whereby new technology results in fast and 
inexpensive SAV. Further, we use scenarios in which the automation technology is at differing levels of 
development. The first is high automation in which vehicles are able to drive autonomously under well-
defined circumstances (inspired by Level 4 SAE International, 2014). The second is full automation in which 
vehicles are driving autonomously under all circumstances (inspired by Level 5 SAE International, 2014). 
Finally, two types of welfare effects of automated driving are computed: (i) benefits due to changes in 
generalized transportation costs and modal split, while keeping population distribution unchanged, and (ii) 

                                                           
2 In this paper we focus on car use and disregard ownership issues. 
3 We follow Litman (2018) in assuming that SAV’s will be cheaper and faster – thus of higher quality - in higher density areas, where there are more people 
to share rides with. In this sense we expect SAV’s to resemble public transit, which has a lower cost per passenger kilometer in higher density areas (e.g. 
Guera and Cervero, 2011). Simulations for the city of Lisbon (ITF/OECD, 2015) reveal that in a city, a system of shared automated mobility services does 
indeed have short waiting times and only limited roundabout travel, as compared to a direct car trip.  
4 Public transit plays a key role in European cities, and its modal share is considerable, reaching 40% of the journeys in some cities (PBL,2016). In Dutch 
cities the modal share of public transit is somewhat smaller - 15% - because bicycle plays an important role in urban transportation (KIM, 2018). The 
automation of public transit can have important effects on the attractiveness of cities. 
5 Car transport automation may also lead to concentration of land use by freeing up considerable parking space in city centers (Anderson et al., 2014, 
Zakharenko, 2016) and thus attracting more people to cities. This impact of automation through parking in particular is relevant for cities in the United 
States, where cars constitute the primary mode of commuting. In most European cities the impact of public transit automation on land use may be more 
significant. 
6 LUCA is described in detail in Teulings et al. (2018). This LUTI model was specifically designed to study the effects of transportation developments on 
population distribution, land prices and welfare in the Netherlands. LUCA is a computable general equilibrium model in which all parameters have been 
estimated from real data. The model was applied to analyze the effects of (i) railway tunnels under a waterway that cuts the Amsterdam region in two parts 
(Teulings et al., 2018); and (ii) a car tunnel connecting two islands in the West of the Netherlands (Ossokina et al., 2014). 
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benefits due to relocation of population and changes in land use. The latter effects are related to the so-
called wider benefits of transport infrastructure (e.g. Laird and Venables, 2017). 
 
This paper relates to several streams of the literature. The first examines the possible effects of vehicle 
automation on various aspects of mobility. Meyer et al. (2017) provide a comprehensive literature overview 
of the impact that autonomous vehicles could have on aspects such as travel experience, generalized travel 
costs, road capacity, travel demand, road safety, energy demand, emissions and accessibility. Additionally, 
some recent papers examine the implications for operational capacity (Chen et al., 2017), traffic delays and 
congestion (Correira and Van Arem, 2016, Berg and Verhoef, 2016). For the subject of this paper, the most 
relevant studies are those that focus on how automation technology impacts land use. Zakharenko (2016) 
considers a single city and shows how self-driving cars lead to longer commuting distances, a larger sized city 
due to urban sprawl, increases in property rents in the city center and decreases in the periphery. Anderson 
et al. (2014) predict that car automation will compel people to travel more, increase city sizes and reduce 
residential density. Litman (2018) and Heinrichs (2016) suggest that automation will lead to suburbanization, 
similar to how highways did in the 20th century. We contribute to this literature by (i) quantitatively analyzing 
the effects of automation for the entire country (not only for a single city), and (ii) comparing the effects of 
car automation and public transit automation trends, using a unified formal framework with parameters 
based on real data.  
 
Second, a growing body of literature examines the effects that developments in transportation have on 
economic activity and the spatial distribution of population. Desmet and Rossi-Hansberg (2013) show that 
while better amenities and higher productivity lead to larger sized cities, higher congestion costs lead to 
smaller sized cities. Baum-Snow (2007, 2010) empirically reveals how highway construction in the United 
States in 1950-1980 led to the suburbanization of population and jobs. Garcia-Lopez et al. (2016) find that a 
similar effect occurred in Europe. Duranton and Turner (2012) estimate a model explaining the co-evolution 
of highways and employment. Teulings et al. (2017) detail how better railway connections between an 
economic center and its periphery can lead to relocation of jobs to the center and people to the periphery. 
Our paper examines the possible effects of automated driving technology. 
 
Third, this paper is related to various studies based on LUTI (land use transportation interaction) models. 
These are primarily large, applied models that were developed to analyze the implications that large-scale 
investments in transportation infrastructure - new highways or new railways – have for land use and 
conversions of land from agricultural to urban functions. LUTI models often integrate a separate 
transportation model and separate land use model (for Paris, see De Palma, 2005, et al.; for Brussels, Jones 
et al., 2017; and for an overview, Van Wee, 2015). To the best of our knowledge, land use transportation 
interaction models have not yet been applied to studying the effects of automated driving technology. 
Further, the LUCA model differs from the standard models in four ways. First, LUCA was developed as a 
single model, in which agents simultaneously choose their home location, job location and transportation 
mode; consequently, consistent behavioral assumptions were made. Second, LUCA is a general equilibrium 
model, in which transportation changes result in a new equilibrium on the residential land market. As such 
our model is closely related to RELU-TRAN, the Anas and Liu (2007) general equilibrium model. Compared 
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to other spatial general equilibrium models, LUCA is highly transparent, as it is based on a very limited 
number of equations. Third, in LUCA, residential land prices are one of the determinants of residential 
location choice, thereby allowing the monetary welfare effects of transportation developments to be 
calculated endogenously. Fourth, LUCA allows to clearly distinguish the effects of transportation 
developments that are due to changes in generalized transportation costs and modal split, from those due 
to relocation of population and changes in land use. 
 
Finally, our paper is related to policy studies that use scenarios to simulate long-term economic and spatial 
developments, a practice widely used in policy analysis in the Netherlands and other developed countries. 
The most recent Dutch scenarios for economic and spatial developments were published in 2015 (CPB/PBL, 
2015), but they did not explicitly model the consequences of automated driving technology. The KiM 
Netherlands Institute for Transport Policy Analysis (KiM, 2015) has developed the qualitative scenarios for 
self-driving cars that are used as a baseline for the research in this paper. Rand Corporation (Rohr et al., 2016) 
has developed qualitative transport scenarios for the UK; automation technology plays a role in one of those 
scenarios. Milakis et al. (2017) developed scenarios for self-driving cars in the Netherlands; however, they do 
not allow for a spatial dimension. 
 
Summarizing, our main contribution to the literature is as follows. We show what effects vehicle automation 
can have on population distribution and welfare, quantifying these effects by means of a computable general 
equilibrium model. We compare the implications of car automation and public transit automation forces, 
and study the effects of their interaction.  
 
The remainder of the paper is structured as follows. Section 2 discusses the conceptual background, scenarios 
and assumptions. Section 3 explains the methodology and formally describes the LUCA model’s main 
mechanisms and assumptions. Section 4 explains the simulation design. Section 5 presents the simulations’ 
quantitative findings. Section 6 presents a discussion, and Section 7 provides final conclusions. 

2 Conceptual background: scenarios and assumptions 

The six different scenarios used in this paper were inspired by various KiM Netherlands Institute for Transport 
Policy Analysis (2015, 2017) research studies. The scenarios differ according to: 
-  the level of automation technology: (1) high automation and (2) full automation, 
- the main automation component: (A) CAR automation, (B) PT - Public Transit - automation, (C) a 
combination of CAR and PT. 
This section discusses the definitions and assumptions of the six scenarios presented in Table 1. 
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    <insert Table 1 here> 
 
SAE International (2014) distinguishes five levels of automation: driver support (Level 1), partial automation 
(Level 2), conditional automation (Level 3), high automation (Level 4) and full automation (Level 5). The 
higher the level of automation, the less important the role of the human driver. Our scenarios focus on 
Level 4, in which automated vehicles are able to drive autonomously under well-defined circumstances, 
and Level 5, in which the automated driving system can perform all driving tasks under all circumstances 
without any human intervention. The scenarios combine these two levels of automation and additional 
assumptions about car and public transit automation, as based on the literature.  

High automation (based on Level 4 SAE) 

The car component in high automation is similar to Meyer et al. (2017), with technology allowing cars to drive 
autonomously under well-defined circumstances. On roads with well-marked, separate lanes, self-driving 
cars can adjust their speeds to the flow of the traffic, change lanes and overtake, give way to merging traffic, 
etc. However, vehicles cannot operate autonomously on narrow streets where other modes (pedestrians, 
bicycles, buses) interact with the flow of cars, or in complex, unclear traffic conditions. We therefore assume 
that in this world substantial numbers of people drive ‘hands free’ in extra-urban situations, both on 
highways and other roads. The driver must resume control when outside the city in exceptional cases the 
automated system signals that it falters, and once the car enters the city. When the car is controlling the 
driving actions in traffic, the driver can engage in other activities. Consequently, in extra-urban situations, 
drivers may perceive a lower cost of driving time, although this is not the case in cities. Further, drivers must 
remain seated in confined spaces behind steering wheels.  
 
High automation in public transit pertains to driverless trams and metros travelling on separate trajectories. 
Driverless pod-/bus-systems operate on fixed routes in cities and between main public transit hubs, such as 
stations and university campuses. ICT systems support passengers with up-to-date, personalized travel 
information. Lower costs allow for higher frequency, which, when combined with better travel information, 
considerably reduces the out-of-vehicle (waiting) time. Similar to the conventional public transit, automated 
transit is of higher quality in cities than in less urban environments. 
 
 
Full automation (based on Level 5 SAE) 
In this scenario automation technology has reached the highest level of development imaginable today. 
Transportation looks quite different from what we are used to at present, with considerable parts of it likely 
having been replaced by door-to-door mobility services delivered by autonomous vehicles and supplied by 
fleet-owning companies (KiM, 2015). Scheduled services, like trains and metros, only continue to operate on 
very dense transport links. On all other links, shared-ride or privately-ridden autonomous vehicles (SAVs or 
PAVs) have replaced buses, trams and private cars. In cities where bicycles claim a considerable modal share, 
autonomous vehicles also compete with bicycles. In this scenario, automated vehicles operate without 
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steering wheels and other driver controls, and these vehicles are able to navigate autonomously and safely 
in all traffic conditions, both on highways and in cities.  
 
We model the car component here as a PAV and the public transit component as a SAV.7 Compared to 
conventional cars, PAVs offer an enhanced travel experience, because drivers no longer need to participate 
in the driving process, and consequently can use the time spent in the vehicle for other tasks or leisure. A 
SAV offers much faster and more frequent transportation than conventional public transit. It is not restricted 
by fixed schedules and routes, but is demand-responsive and door-to-door. Travelers no longer need to walk 
to bus stops or make line transfers. Moreover, SAVs travel along largely direct routes to their destinations, 
only making detours to pick up or drop off other passengers. Such detours are relatively short, especially in 
cities, where the high population density allows ICT systems to very efficiently allocate passengers (ITF/OECD, 
2015). SAVs can offer faster and more frequent trips in more densely populated areas than in less densely 
populated areas. 
 
Other assumptions 
In full automation, PAVs and SAVs take passengers to their destinations and then proceed to pick up other 
passengers, or, alternatively, to return to their designated parking places, which are situated outside of 
residential or working areas. In the cities, conventional parking lots and parking fees disappear. In this 
paper we assume that, in order to ensure quality of life, cities will introduce other traffic reducing policies - 
such as e.g. road pricing schemes8 - that will have similar effects to the parking fees currently used today. 
Additionally, fleet owners will likely make trip fares time-varying, adjusting them according to transport 
demand and inner city capacity during peaks hours, which will also serve to limit the growth of urban 
traffic. 
 
Automation technology will likely have a positive impact on road capacities and relieve congestion. This 
effect on congestion and travel times will however be counteracted by an increase in travel demand, 
particularly among the user groups currently lacking access to cars (the elderly, handicapped, children, etc.) 
Using the Swiss national transport model, Meyer et al. (2017) found that when non-urban roads are filled 
with cooperative, fully self-driving vehicles, road capacity might improve by 80% to 270%. The reason is 
that cooperative vehicles can drive closer to each other than traditional vehicles, thus increasing road 
capacity. The LUCA model used in this paper abstracts from modelling road capacity and congestion, while 
disregarding the feedback effects that automation has on travel times. In Section 6.2 Limitations, we 
discuss how relaxing this assumption would impact our findings. Further, with its focus on land use, our 
paper can be regarded as complementary to the analysis in Meyer et al. (2017), who focus on accessibility. 
 
Finally, assumptions are needed about the autonomous developments in population towards a future in 
which vehicle automation is fully developed. KiM (2017) argues that this may take quite some time. A 

                                                           
7 This paper does not consider ownership issues, but it is logical to assume that SAV’s will be owned by fleet owners, while PAV’s can be both owned by 
fleet owners and by individuals (see e.g. Stocker and Shaheen, 2017). 
8 Another reason why cities might want to introduce such policies is that parking fees currently account for a considerable part of the municipal budgets and 
it is likely that cities will try to compensate for the disappearance of the fees. 
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recent scenario study, ‘Welfare and physical environment’ (CPB/PBL, 2015), models the spatial 
developments in the Netherlands for 2012-2050 in two scenarios, high and low. In these two scenarios, 
population growth and urban growth vary: population increases in the high scenario, and decreases in the 
low scenario. Urban population increases in both scenarios, but more in the high scenario. Because of the 
large degree of uncertainty, in our research we set the autonomous developments in population to zero. To 
keep the calculations transparent, we also set urban dynamics to zero, with the current situation (base year 
2011) serving as the simulations’ starting point. We compare the size of our population relocation effects 
with the effects from the mentioned scenario study (CPB/PBL, 2015). 

3 Methodology 
To simulate the effects of automated driving on population distribution and land use, we use LUCA, the Dutch 
spatial general equilibrium model (Teulings et al., 2018) that belongs to the type Land Use Transportation 
Interaction models. LUCA models the individual choices that workers make pertaining to their home 
locations, job locations and commuting modes, and the implications such choices have for land use. The 
model distinguishes some 3,000 home and job locations (four-digit postal codes),9 and four transportation 
modes, namely, car, train, bus/tram/metro and bicycle/walking. A key difference between LUCA and its peer 
models is that LUCA includes data on land prices and is capable of modelling an equilibrium in the residential 
land market. Information about land prices allows to calculate the welfare effects of various developments 
in transportation. Furthermore, LUCA allows to distinguish between (i) welfare benefits that are due to modal 
split and improvements in generalized transportation costs, keeping the distribution of the population fixed, 
and (ii) the benefits due to changes in population distribution and land use. 
 
LUCA, which is based on micro-economic premises, models the behavior of four types of agents: three 
types of consumers who differ in their levels of educational attainment (low, middle and high), and land 
owners. Consumers choose where to live and work and how to commute, and land owners rent housing to 
consumers. Below we discuss: the model’s setup (3.1), the main equations (3.2), the equilibrium, 
counterfactual simulations and calculation of welfare effects (3.3), and the model’s parameters (3.4).  

 
3.1 Model set up 
We consider a country with N individuals i. Each individual is endowed with an education level s: low, 
middle or high. There are Ns individuals of education level s, so that ∑ 𝑁𝑁𝑠𝑠 = 𝑁𝑁 𝑠𝑠 . The country contains H 
locations that are either indexed h for the home location of an individual, or j for her job location. Each 
individual has exactly one job. Within each location h, there are Kh houses. The number of houses is 
determined endogenously. Individuals choose to live in one of the houses k∊ Kh x H. Hence, by choosing a 
house k, an individual implicitly chooses to live in the home location h where that house is located and she 
chooses land consumption Lih. Individuals also choose job location j. Finally, they choose a mode of 
transport m. It is convenient to define the combination of the three choices for a home, a job location and a 

                                                           
9 A four-digit postal code in the Netherlands contains some 1,500 houses, and in cities spans an area of approximately one square kilometre. 
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mode of transport as one vector: x = {h, j, m}. The choice of x has a nested discrete structure, as described 
in Figure 1. Table A1 in Appendix A summarizes the main notation of the model. 
 
When making the choice of x, the individual maximizes her indirect utility: 
 
𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖[(𝑥𝑥)] = v(𝑅𝑅ℎ) + 𝜇𝜇𝐾𝐾𝐾𝐾(𝛼𝛼′𝑠𝑠𝑎𝑎ℎ + 𝑧𝑧ℎ) +𝜇𝜇𝐾𝐾𝐾𝐾𝜇𝜇𝐽𝐽𝐽𝐽𝑦𝑦𝑠𝑠𝑠𝑠 − 𝜇𝜇𝐾𝐾𝐾𝐾𝜇𝜇𝐽𝐽𝐽𝐽𝜇𝜇𝑀𝑀𝑀𝑀𝛾𝛾𝑠𝑠′𝑐𝑐𝑠𝑠ℎ𝑗𝑗𝑗𝑗 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  (1) 
 
where: 
• Rh is the land price in location h and v(𝑅𝑅ℎ) is a function of the land price, 
• 𝑎𝑎ℎ and 𝑧𝑧ℎ are observed and unobserved home location amenities (such as e.g. parks, restaurants, 

cultural amenities, etc.),  
• 𝑦𝑦𝑠𝑠𝑠𝑠  are job location amenities (such as e.g. availability of cafes or supermarkets near the office), 
• 𝑐𝑐𝑠𝑠ℎ𝑗𝑗𝑗𝑗 are characteristics of a trip between h and j with mode m (including time, cost, etc.), 
• 𝛼𝛼, 𝛾𝛾 are parameters indicating the utility weight of home amenities, respectively commuting variables, 
• 𝜇𝜇𝐾𝐾𝐾𝐾, 𝜇𝜇𝐽𝐽𝐽𝐽, 𝜇𝜇𝑀𝑀𝑀𝑀 are parameters connected to the nested logit structure of the model, 
• 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is a Gumbel distributed error term that supports the nested structure described in Figure 1. 
 
The land consumption Lih in home location h is described by the following equation: 
 
𝐿𝐿𝑖𝑖ℎ = −v′(𝑅𝑅ℎ)𝑊𝑊𝑖𝑖(𝑥𝑥)          (2) 
 
where 𝑊𝑊𝑖𝑖(𝑥𝑥) is the wage – net of commuting costs – of person i choosing a choice set x. For formal 
derivation of equations (1) and (2) from primitives, see Teulings et al. (2018). 
 

<insert Figure 1 here> 
 

3.2 Main equations of the model 
Equation (1) allows for a simple interpretation of the utility function. Utility positively depends on the 
amenities an individual can enjoy in her home and job location, and negatively on the land price and 
commuting costs. Maximizing the indirect utility function (1) with respect to x = {h,j,m}, we can derive the 
optimal value of the choice variable x. In a nested logit, nests can be solved sequentially (Ben-Akiva and 
Lerman, 1985); hence, we start with the choice of the transportation mode and then proceed to job 
location and home location choice. 

Transportation mode choice 
The probability of choosing transportation mode m from the set M, given that a person lives in h, works in j 
and has education s, is described by a standard multinomial logit (MNL) model: 
 

Pr[𝑚𝑚|ℎ, 𝑗𝑗, 𝑠𝑠] = exp�−𝛾𝛾𝑠𝑠′𝑐𝑐𝑠𝑠ℎ𝑗𝑗𝑗𝑗�
exp�−𝑐𝑐𝑠𝑠ℎ𝑗𝑗�

         (3) 
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𝑐𝑐𝑠𝑠ℎ𝑗𝑗 = −ln �∑ exp�−𝛾𝛾𝑠𝑠′𝑐𝑐𝑠𝑠ℎ𝑗𝑗𝑗𝑗�𝑚𝑚∊𝑀𝑀 �        (4) 
 
where −𝑐𝑐𝑠𝑠ℎ𝑗𝑗 is the logsum of the transportation mode choice model. The logsum reflects the expected 
value of the generalized commuting costs for an individual of education s living in h and working in j. Note 
that for all modes, 𝑐𝑐𝑠𝑠ℎ𝑗𝑗𝑗𝑗 are modelled in terms of travel time- and cost- related attributes of a trip. To keep 
the model transparent and to be able to incorporate the welfare analysis and the land market equilibrium, 
LUCA does not make explicit assumptions about specific routes, vehicle capacity, etc.  

Job location choice 
The probability of choosing job location j from the set H, given that the agent lives in h, is described by a 
standard MNL model: 

Pr[𝑗𝑗|ℎ, 𝑠𝑠] = exp�𝑦𝑦𝑠𝑠𝑠𝑠−𝜇𝜇𝑀𝑀𝑀𝑀𝑐𝑐𝑠𝑠ℎ𝑗𝑗�
exp(𝑔𝑔𝑠𝑠ℎ)          (5) 

𝑔𝑔𝑠𝑠ℎ = ln �∑ exp�𝑦𝑦𝑠𝑠𝑠𝑠 − 𝜇𝜇𝑀𝑀𝑀𝑀𝑐𝑐𝑠𝑠ℎ𝑗𝑗�𝑗𝑗∊𝐻𝐻 �        (6) 
 
where 𝜇𝜇𝑀𝑀𝑀𝑀𝑐𝑐𝑠𝑠ℎ𝑗𝑗 is the contribution of the generalized commuting costs 𝑐𝑐𝑠𝑠ℎ𝑗𝑗 to the utility of working in j, and 
𝑔𝑔𝑠𝑠ℎ is the logsum of the job location choice model. The logsum measures the option value of finding a job 
for someone living in h and is thus a generalized job accessibility measure. 

 
Home location choice 
The third logit model describes the probability of choosing home location h from the set H: 
 

Pr[ℎ|𝑠𝑠] = exp(𝑣𝑣𝑠𝑠ℎ+𝑙𝑙𝑙𝑙𝑁𝑁ℎ)
exp(𝑣𝑣𝑠𝑠)           (7) 

𝑣𝑣𝑠𝑠ℎ = 𝜇𝜇𝐾𝐾𝐾𝐾−1𝑣𝑣(𝑅𝑅ℎ) + 𝛼𝛼𝑠𝑠′𝑎𝑎ℎ + 𝑧𝑧ℎ + 𝜇𝜇𝐽𝐽𝐽𝐽𝑔𝑔𝑠𝑠ℎ        (8) 
𝑣𝑣𝑠𝑠 = ln[∑ exp(𝑣𝑣𝑠𝑠ℎ + 𝑙𝑙𝑙𝑙𝐾𝐾ℎ)ℎ∊𝐻𝐻 ]          (9) 
 
where 𝐾𝐾ℎ is the number of houses in h. 

 
3.3 Land market equilibrium, counterfactuals and welfare analysis 
Using (3)-(9) one can predict the demand for houses in each location h:10 
 
𝑁𝑁ℎ = ∑ 𝑁𝑁𝑠𝑠𝑠𝑠∊𝑆𝑆 Pr[ℎ|𝑠𝑠]          (10) 
 
Similarly, the model can also predict the number of jobs per job location j, and the total number of 
kilometers travelled using different transportation modes. 

 

                                                           
10 In equilibrium, this demand for houses in h equals the – endogenously determined - number of houses in location h, Kh. 
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In equilibrium the land prices Rh must be such that the total demand for land at location h equals the total 
supply of land. The supply of residential land in each location is exogenously given as: Ah. The demand for 
land can be calculated from equations (2) and (10) as: 𝑁𝑁ℎ𝐿𝐿�ℎ, where 𝐿𝐿�ℎ is the average land consumption in 
h.  
 
The initial (current) equilibrium is described by the observed values of 𝑁𝑁𝑠𝑠, 𝑅𝑅ℎ and 𝐴𝐴ℎ. Starting with these 
and using the model’s parameter estimates (see Section 3.4), we can run counterfactual simulations. In this 
paper the transportation modes’ characteristics are adjusted in the counterfactuals. In the first place this 
affects Pr[𝑚𝑚|ℎ, 𝑗𝑗, 𝑠𝑠] in equation (3) and 𝑊𝑊𝑖𝑖(𝑥𝑥) in equation (2). Ultimately, it has an impact on the demand 
for land 𝑁𝑁ℎ𝐿𝐿�ℎ in different locations h, resulting in a wedge between demand and supply of land. To arrive 
at a new equilibrium, land prices are adjusted until the demand and supply for land in each location h 
becomes equal again. The new equilibrium yields a new number of houses 𝐾𝐾ℎ in location h. 
 
Using the above inputs, LUCA allows for simulating the effects that transportation improvements have on 
the spatial distribution of population and jobs, land use and land prices. In this simulation, individual 
workers choose where they want to live, conditional on land prices, residential amenities and the transport 
accessibility of jobs. In each iteration the model sums up individual demand for housing and land to the 
total demand for land at each location, and confronts it with supply. Hence, demand for housing is 
endogenous and follows from the model. LUCA therefore is perfectly suited for modelling the impact that 
transportation improvements have on land markets and people’s residential choices. Consecutively 
adjusting land prices allows the model to converge to a new equilibrium, equalizing the demand for and 
supply of land. 
 
LUCA allows for calculating the welfare effects of transportation developments. Table 2 reports formulae 
for these effects, where superscripts n/o indicate the values of the variables in the new/old equilibrium, 
and W𝑠𝑠 is the wage of education level s. The first line reports the welfare benefit from the changes in modal 
split and from the improvement in generalized transportation costs, keeping the location of homes and jobs 
fixed. The second line also includes the effect from people choosing other home and job locations that yield 
them higher utility, and from the consecutive changes in land use and land prices. The difference between 
the two lines is equal to the (wider) benefits from changes in the population distribution and land use. For 
further details see Teulings et al. (2018). 
 

<insert Table 2 here> 
 
3.4 Parameters of the model 
The model’s parameters were estimated based on the home, job and commuting choices data of 60,000 
Dutch employees (see Teulings et al., 2018, for a detailed discussion), as well as postal code data pertaining 
to land prices and amenities, as provided by Statistics Netherlands. The model distinguishes some 3,000 
home and job locations, defined on the level of a four-digit postal code, and four modes: car, train, bus-
tram-metro and bicycle/walking. The base year is 2011.  
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Table 3 details the estimated parameters of the modal split equations (3)-(4) and Table 5 the estimated 
parameters of the home location choice logit (7)-(9). These parameters are most relevant for this study, as 
some will be adjusted in the simulations. For the model’s other parameters, see Teulings et al. (2018).  
 
In the modal split equations, the main parameters are coefficients of the variables time and cost of the trip. 
These are mode-specific. The general time coefficient in panel A of Table 3 can be interpreted as the 
coefficient by the car mode. Coefficients by other modes are reported in deviations from the car 
coefficient. Further, the coefficients for bus-tram-metro and train differ between in-vehicle time and out-
of-vehicle time.  
 

<insert Table 3 here> 
<insert Table 4 here> 

 
Table 4 details the values of time implied by these parameters. The figures are reasonably close to the 
values of time specified in the Dutch government’s official guideline for cost-benefit analysis (Significance 
et al., 2013). The in-vehicle time value is higher for the car mode than for public transport; this reflects the 
higher effort car driving involves. The out-of-vehicle (waiting) time is perceived more negatively for the bus 
than for the train mode; this reflects the more comfortable waiting environment a train station offers, as 
compared to a bus/tram stop. The intercepts (mode-specific constants) differ according to mode and the 
travelers’ education levels; for example, highly educated travelers have a relatively strong preference for 
trains and bicycles, while low-educated travelers prefer these modes the least.  
 
The utility function for trips with a car and with bus-tram-metro has a part that relates to the urban density 
of the home and job locations. For cars, land prices at home and at job locations enter utility, in order to 
account for parking costs.11 The coefficients are negative and highly significant. For bus-tram-metro, the 
utility includes a variable indicating the degree of urbanization (scale 1 to 5). Statistics Netherlands 
provided this variable, which is based on the construction density of a given postal code. We include the 
degree of urbanization to account for the fact that public transit is of better quality in places with higher 
population and construction density.  This better quality is not wholly reflected in shorter travel times. It 
also includes such factors as e.g. variety of modes (tram-metro is only available in denser urban areas),12 
reliability, etc. The urbanization variables have positive and highly significant coefficients.  
 
The parameters of the home location choice model (Table 5) represent the utility weights of the home 
locations’ various attributes; these coefficients determine the attractivity of different locations and 
consequently the distribution of the population across locations. As the table illustrates, the weights differ 
between education levels. Low-educated are most sensitive to land rents, and much less to the supply of 
urban amenities in a home location. Highly educated, on the opposite, strongly value amenities such as 
culture, restaurants, nature, and are relatively less sensitive to the level of land prices.   

                                                           
11 By including land prices, we account for both parking fees and the scarcity of parking spaces. Locations with a scarcity of land command higher land 
prices. These locations also tend to have both higher parking fees and fewer parking spots.  
12 See Hensher and Mulley (2015) and the references therein. 
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<insert Table 5 here> 

 

4. Simulation design  
LUCA was developed specifically to analyze the effects of transportation developments on population 
distribution and land prices in the Netherlands. We use the model to quantify the automation scenarios 
described in Table 1. In LUCA, changes due to automation technology directly affect the variables cshjm 
(equation (3) and (4)). The full set of {cshjm} is an origin-destination matrix describing the trip characteristics 
of all possible combinations of home location h, job location j and transportation mode m, see Table 3 for 
the list of trip characteristics. In this paper, car automation and public transit automation are modelled by 
adjusting respectively the parameters of the car transportation mode and the bus-tram-metro mode 
reported in Table 3. We do not adjust the number of available modes (four) in the model, the main reason 
for which is that changing the number of alternatives in a choice set strongly affects welfare (Ben-Akiva and 
Lerman, 1985). To keep the welfare analysis transparent, we want to disregard welfare changes that are 
not connected to adjustments in the trip characteristics {cshjm}. Table 6 below describes how automation 
scenarios are implemented in LUCA and shows which parameters are adjusted. 
 

<insert Table 6 here> 
 
High automation 
Various studies argue that in a fully autonomous car, the value of time (VOT) may be 20% lower than its 
current value (see e.g. Kouwenhoven and De Jong, 2017 and the references therein). In the high 
automation scenario however, the driver must remain in the driver’s seat, ready to take control when 
exiting the highway or when the automated system falters. Our simulation accounts for this by using one-
quarter of the full automation VOT reduction (5%). Moreover, in the high automation scenario, the 
enhanced car travel experience applies to extra-urban roads only, which is approximated in the model by 
reducing the cost of driving time only for trips longer than 15 kilometers (see CAR-1 in Table 6). 
 
To model a shift to faster and more frequent public transit, the out-of-vehicle (waiting) time of the bus-
tram-metro mode is reduced by 20%. The same percentage reduction is applied to the access and egress 
coefficients for trains, because in LUCA travel time reductions in feeding modes do not automatically 
translate into a reduction of train access and egress times (see PT-1 in Table 6). To keep the simulations 
transparent, we assume that the modes’ out-of-pocket (monetary) costs do not change in the automation 
scenarios. All adjustments occur via the travel time variables. 
 
Full automation 
In full automation, cars and bus-tram-metro both meld into autonomous vehicles. Our simulation assumes 
that cars will be replaced by PAVs. Bus-tram-metro will be replaced by automated transit: mostly SAVs, and 
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on links with very dense flows by automated rail-bound services (metro or light rail).13 For PAV, we assume 
that the value of driving time (VOT car) decreases by 20% for trips longer than 5 kilometers (see CAR2 in 
Table 6). Reason to use a threshold of 5 kilometers is that, for very short trips, it is unlikely that passengers 
will benefit much from the ability to engage in various activities during the trip. To model a shift to SAV, the 
bus-tram-metro mode’s in-vehicle travel time is set as equal to the car travel time, plus a 20% detour/waiting 
time; the out-of-vehicle time is set to zero.14 The SAV total travel time in full automation therefore equals 
1.2 times the current car travel time. By linking the SAV travel time to the car travel time, we aim at modelling 
the door-to-door demand-responsive mobility services SAVs provide in the full automation scenario. On few 
very dense trajectories automated metro and light rail services remain. We assume that people optimally 
make a choice between these rail-bound services and SAV; trips made with rail-bound services are therefore 
assigned a travel time equal to 1.2 times the car travel time as well.15 Finally, the access and egress 
coefficients for train trips are set to half their current value, other train parameters remain unchanged. See 
PT-2 in Table 6. In Section 6.1 we run a sensitivity analysis to the above parameters, in which VOT- and time 
gains in full automation are assumed to be smaller.  
 
LUCA’s other parameters remain unchanged in the simulations, including the parameters relating to the 
urban density of home and job locations (see Section 3.4). This feature of the model deserves additional 
discussion, as it implies that, in more densely populated areas, the quality of SAV provision is higher, and the 
cost of using a PAV higher, ceteris paribus. Reasons for this may include city policies aimed at reducing traffic 
and the scale economies of shared transportation (see Litman, 2018, and Section 2 of this paper). In other 
words, keeping the travel time equal, a shared transportation mode is therefore assumed to be relatively 
more attractive in urbanized regions than a private transportation mode, in the same way that this holds for 
conventional cars and public transit. There may of course be other ways to model this characteristic of the 
transportation system; however, given the large uncertainty about future automation developments, the 
simulation was based on the most transparent and computationally easy approach. 

5 Results 
In LUCA, automation affects the behavior of economic agents through several channels (see also Section 3). 
First, agents enjoy more comfortable and quicker trips. Second, the attractiveness of different residential 
locations may change due to an increased transport accessibility. As discussed above, due to the private car 
automation component, suburbs and non-urbanized locations become relatively more attractive. Cities 
become relatively more attractive due to the public transit automation component. Consequently, in the 
new equilibrium with automation, both the modal split and population distribution across the country 

                                                           
13 Hence, our assumptions imply that door-to-door automated transit replaces conventional urban transit, except for a few metro/ light rail lines. Note that in 
the Netherlands a major part of high density public transport takes place by train between the large cities in the Randstad (see the map in Figure 2 Section 
5).  
14 Using SAVs will imply some waiting time between ordering the service and boarding it. Under a reasonable assumption that this time is valued equally to 
driving time, we do not model it separately. In the ITF/OECD (2015) Lisbon ride sharing simulations, detours increase the number of kilometers travelled by 
6%. Waiting time for ride shared services amounts to 3.7 minutes. ITF capped the total allowable increase in door-to-door trip time, including waiting, at 
20%. Our assumptions are in line with these simulation results.   
15 Those for whom the travel time with the metro is longer will take an SAV. 
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differ from that in the reference scenario. Section 5.1 discusses the results for modal split; Section 5.2 
examines population relocation and land prices; and Section 5.3 provides insights into the welfare effects of 
these changes. The effects of automation are reported in comparison to the reference scenario (see Section 
3.4). 
 
In reporting the outcomes, we distinguish a number of non-contiguous regions, ordered by their degree of 
urbanization according to Statistics Netherlands’ classification (see Figure 2). These are: (i) the 4 largest 
cities: Amsterdam, Rotterdam, The Hague and Utrecht – plotted in dark red; (ii) the suburbs of these four 
cities, as well as other larger cities in the urbanized western region of the country, called the Randstad – in 
light red; (iii) larger cities outside the Randstad – in dark green; (iv) suburbs of the larger cities outside the 
Randstad – in light green; and (v) other non-urban regions - in grey. 
 

<insert Figure 2 here> 
 

5.1 Effects of automation on modal split 
Figure 3 presents the modal shift in the six scenarios presented in Table 6, for the Netherlands and the four 
largest cities. Zooming in on the largest cities is informative, as they differ considerably in the reference 
scenario’s modal split, having relatively large shares of bicycles and public transit as compared to the 
country’s average.  

 

<insert Figure 3 here> 

 
In high automation, the modal split does not change much, reflecting the relatively modest adjustments in 
the characteristics of the modes. PAV has approximately the same share as the conventional car, while SAV 
has a similar share to conventional public transit. In full automation, however, there are considerable shifts. 
Consider the COMBI2 scenario. Most prominently, SAV’s share16 increases compared to conventional public 
transit, while PAV’s share is lower compared to the conventional car. SAV’s increased share comes partly at 
the expense of the PAV and partly at the expense of bicycles, which is a popular mode in the Netherlands, 
especially in cities.17  
 
Note that the reported changes in the modal split result from the two mechanisms described at the start of 
this section: (i) changes in the travel characteristics and (ii) relocation of people to other home locations. In 
the next section we will closely examine where people relocate to. Table 7 below illustrates that relocation 
results in a longer average distance between the home and job locations. This distance increases by around 
5% in high automation and more than 25% in full automation. This occurs because vehicle automation 

                                                           
16 This share includes the few metro/light transit lines. 
17 The resulting share of SAV in full automation (17% country average respectively 28% in cities) is in line with the results by Chen and Kockelman (2016) 
who predict a share of SAV between 14% and 39%.  
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lowers the generalized costs of transport, thereby inducing people to choose more remote home and job 
locations. In high automation, longer commutes largely result from the PAV component. In full automation, 
both PAV and SAV contribute to longer trips.18 Longer commutes partly explain why the bicycles’ share 
decreased in the modal split (Figure 3). 

 

<insert Table 7 here> 
 

5.2 Effects of automation on population distribution  
The figures below detail the population relocation effects in the high and full automation scenarios, 
aggregated for each of the five regions distinguished above. Let us first consider high automation (Figure 4 
upper panel). The public transit and car automation components have opposite effects. Public transit 
automation (PT-1) attracts population to urbanized areas, especially to Randstad. This happens because of 
the cheap and fast automated transit that is feasible in higher density areas. The suburbs of the cities 
outside the Randstad, as well as the non-urban regions experience population loss. Private vehicle 
automation leads to suburbanization (CAR-1): cities lose population to suburbs and non-urban areas.  This 
occurs because longer commutes become more acceptable. Smaller isolated cities outside the Randstad 
and their suburbs experience the largest population loss. The reason is that they are surrounded by 
extended and attractive non-urban areas, and that the urban amenities they offer are relatively limited. 
The combination of the car and public transit automation components (COMBI-1) results in a concentration 
of population in the cities and suburbs of the highly urbanized Randstad. Isolated cities and their suburbs 
lose population.  
 
In the full automation scenario the effects are three to four times larger than in the high automation 
scenario, but the general trend is the same (Figure 4 lower panel). The public transport component (PT-2) 
attracts population to urbanized areas while the car component (CAR-2) leads to suburbanization. 
Combination of the two components (COMBI-2) results in relocation of the population from smaller 
isolated cities and their suburbs to the urbanized part of the country.  
 
To put these effects into perspective, we compare the above results with the regional development 
scenarios for the Netherlands (CPB /PBL, 2015), which are widely used as input for national policy analysis 
and debate. In our calculation, the regional effects of full automation are between -3 and 3%. In the 
regional development scenarios, regional growth from 2012-2050 is between -10% and +30%, depending 
on the region and the assumptions made about economic growth and regional concentration or dispersion. 
Cities are expected to grow the most, and non-urban areas the least. When compared to those 
developments, population shifts due to automation could make a difference; for instance, they might 
increase the challenges the four largest cities and their suburbs face in accommodating population growth, 
and alleviate or eliminate such challenges for the cities outside the Randstad. 

                                                           
18 Note that shared automated vehicles (PT-2) make living in cities more attractive, yet at the same time raise commuting distances because within larger 
urban areas people live further away from their job locations. 
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<insert Figure 4 here> 
<insert Figure 5 here> 

  
 

The setup of LUCA allows for zooming in on the population relocation effects at the more detailed spatial 
level of a four-digit postal code (see Figure 5). This figure depicts the borders of the aggregated regions 
discussed above: red for cities and suburbs in the Randstad, and green for cities and suburbs outside the 
Randstad. Naturally, Figure 5 yields similar insights to Figure 4, while concurrently allowing for a more 
detailed study of the differentiated relocation effects in the less urban region (Rest). Here the area 
surrounding the urbanized Randstad stands out: in CAR and COMBI this area experiences considerable 
population growth, while in PT it experiences relatively small population decline. Conversely, the edges of 
the country are hit relatively harder by population decline, in PT as well as in COMBI. 

 

The shifts in residential demand discussed above have implications for the housing and land markets. In the 
Netherlands – as in various other countries – cities have grown faster in recent decades than the rest of the 
country, which has led to an increasing divergence in housing prices between cities and less urban regions 
(see e.g. Gyourko et al., 2013). There is concern that such divergence could lead to a growing segregation 
between cities and non-urban regions. The CAR component offers a counterforce, which may somewhat 
relax the tight land markets in cities. The PT component however further increases the divergence. 

 

5.3 Welfare effects  
Table 8 details the welfare benefits, expressed in terms of yearly flows (see Section 3 for a discussion of 
how these benefits are defined). We distinguish the effects of (i) an enhanced travel experience and modal 
shift, due to faster and more comfortable trips with PAV and SAV; and (ii) relocation of population to other 
home and job locations and the consecutive change in land use. Part (ii) is a second order effect of PAV and 
SAV. Owing to the enhanced travel experience in a PAV, individuals can move to the attractive non-urban 
areas they always wanted to live in but could not do so because of the prohibitive costs of commuting to 
job clusters. This increases their utility. They can also switch jobs, choosing a job at a more distant but more 
productive location that yields a higher pay and a higher satisfaction. Owing to fast and frequent SAV 
services, commuting within urban regions becomes relatively much faster than in less urbanized locations, 
which increases both the absolute and relative utility of residing and working in a city. Residential 
relocations foster land redevelopment, allowing the land use to optimally adjust to the new situation and 
yielding additional benefits (see Teulings et al., 2018 and also Laird and Venables, 2017). Job relocations 
increase labour supply at most productive locations allowing the existing productivity and agglomeration 
benefits to be used more efficiently.  

 
In the full automation scenario (COMBI-2), the total benefits amount to some 5 billion euro per year, or 
0.7% of the Netherlands’ GDP, while in the high automation scenario the benefits are six times smaller. The 
largest part of this welfare improvement results directly from faster travel times and greater travel comfort. 
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Benefits due to relocation to other home and job locations equal 3% of the total welfare benefits in the 
high automation scenario and 10% in the full automation scenario. The major transportation improvements 
in full automation render it possible to achieve larger welfare gains by changing home or job locations.  

 
<insert Table 8 here> 

 

6 Discussion 
6.1 Sensitivity analysis 
The scenarios described in the previous section rely on a considerable number of assumptions about future 
developments in vehicle automation. Because such developments are highly uncertain, it is important to 
test the robustness of the findings to the choice of assumptions.  
 
This section contains two robustness checks, focusing on the COMBI-2 scenario: 
(i) Travelling with autonomous public transit may not be as fast as assumed in COMBI2. To account for this, 
in this variant the trip duration with SAV equals 1.5 times the car trip duration, instead of 1.2 times the car 
trip duration in COMBI2. 
(ii) Not all people may equally enjoy the enhanced travel experience in the autonomous car. For example, 
using a car as a workplace is less likely for people whose professions require face-to-face contact with other 
people, such as e.g. nurses or shop assistants.19 We model this by assuming that highly skilled people 
experience a larger decrease of value of time in cars than people with other skill levels.  
 
Table 9 summarizes these assumptions. Figure 6 reports the outcomes of the robustness checks, in a similar 
manner to Figure 4. For reference, the COMBI2 outcomes are also included in the figure. 
 
The robustness checks yield intuitive results. In scenario (i), with its smaller improvement in travel time due 
to SAV, the urbanization effect is smaller than in COMBI2, as is the population loss in less urbanized areas. 
In scenario (ii), with its differentiated enhancement of the travel experience in PAV, the urbanization effect 
is larger. In both robustness checks however, cities and suburbs in the Randstad gain population, while the 
isolated cities outside the Randstad lose population, as compared to the baseline. Hence, in light of these 
conducted robustness checks, the analysis’ main conclusions are deemed to be robust. 
 

<insert Table 9 here> 
 

<insert Figure 6 here> 
 

 
6.2 Limitations 

                                                           
19 People may also face restrictions on travel time. E.g. if at the home location children must be brought to and picked up at a day care centre, longer travel 
times may be less feasible. 
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A general equilibrium model like LUCA provides a transparent and tractable analysis of the consequences 
that automated and autonomous driving may have for population distribution and land use; further, it 
allows for computing the associated welfare effects. Concurrently, the methodology entails a number of 
limitations and simplifications, including those pertaining to the workings of the transport market.  
 
First, the analysis abstracts from feedback effects of automation on congestion and travel times. Meyer et 
al. (2017) argue that automation-induced increases in road capacity may vary between 80% and 270%. 
Even after accounting for the counteracting growth in travel demand, Meyer et al. find large net increases 
in accessibility, especially in rural regions, which implies that the analysis in Section 5 may underestimate 
the suburbanization effect. Concurrently, ITF/OECD (2015) Lisbon simulations reveal that ride sharing in 
multi-person automated vehicles reduces the fleet of vehicles in the city. In these simulations, all current 
trips made by cars and buses in the city can be replaced by a fleet of shared automated vehicles equal to 
some 10% of the current number of vehicles, while the number of kilometers traveled increases 
moderately with 6%.20  Although these SAVs are used much more intensively than the current fleet, 
Martinez and Viegas (2017) show that accessibility of jobs within the Lisbon area improves considerably. 
Consequently, congestion in the city may decrease due to ride sharing automation, which would imply that 
the results of Section 5 underestimate the urbanization effect.  
 
Second, the simulations above do not take into account that automation may free up parking spaces in city 
centers (Anderson et al., 2014, Zakharenko, 2016). Transforming existing parking places into residential 
areas or green areas could make city life more agreeable. In the longer term, redesigning inner city districts 
without having to include parking facilities could ease residential land scarcity. Both mechanisms would 
attract more people to cities, strengthening the concentration effects in the LUCA scenarios.  
 
Third, this paper focusses on the use of automated vehicles (private ride or shared ride); it disregards 
ownership issues. Privately owned vehicles will most likely be shared with relatives or close friends only. 
Compared to PAVs owned by fleet companies, privately owned PAVs could make more or longer trips 
empty of passengers and be used less intensively. Hence, a larger share of privately owned versus fleet-
owned vehicles may increase traffic intensity within cities, thereby reducing the cities’ attractiveness. It is 
however extremely difficult to predict to what extent vehicle ownership may change due to automation; 
this issue is one of the fundamental uncertainties in the KiM (2015, 2017) scenarios and transition paths.  
 
Fourth, a number of simplifications may lead to underestimating the welfare effects of automation. The 
impact of automation on traffic safety is a major case in point. Automation will likely make both inner city 
and long distance traffic safer, this having among other things an impact on commuting and residential 
choice. Although it is difficult to state whether enhanced traffic safety will stimulate population dispersion 
or concentration, it will unambiguously yield additional welfare benefits. Further, LUCA’s current version 
focusses on commuting trips only. However, trips with other purposes will also benefit from faster SAVs 
and the enhanced travel experience in PAVs, especially as automation will likely increase travel 

                                                           
20 Similar results were obtained for Helsinki and Auckland (ITF/OECD, 2017a and 2017b). 
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opportunities for children, the elderly and disabled, which will yield additional welfare benefits. Finally, it is 
likely that the ceteris paribus preference (as reflected in mode specific constants) for the PAV and SAV will 
be higher than for the conventional car respectively public transport. The reason is that both modes yield a 
higher comfort as compared to their conventional counterparts. This will also lead to higher welfare 
benefits of automation.   
 
In summary, relaxing the limitations and simplifications of this paper’s analysis would have various 
implications for population distribution and land use, and would certainly impact the size of the effects 
presented. Yet, the paper’s main insights might be less affected, because the effects of relaxing the 
limitations on concentration and dispersion would be (partly) offsetting. It is however important to bear in 
mind that this paper’s findings provide a first impression of a very complex phenomenon, and that vehicle 
automation raises many questions that remain open for future research.  
 
6.3 Implications 
This paper suggests that automated driving may lead to both population dispersion and population 
concentration. These effects become substantial when the technology reaches the level of full automation 
(SAE level 5).  This result was obtained using a model calibrated for the Netherlands’ spatial and transport 
structure. To what extent will our research findings apply to other countries?  
 
The Dutch situation has some specific features, two of which stand out. First, the population size and 
density in the four Dutch cities comprising the Randstad, the county’s polycentric urban region, have much 
smaller and less dense populations than other large metropolitan areas, such as Paris or London.21  The 
insights derived from our research might not be directly applicable to metropoles with very high population 
density, because in such metropoles inner city congestion could restrict the use of automated vehicles, 
whereby the metro system will remain essential for inner-city travel. The size and population density of 
Dutch cities is however largely comparable to that of many other medium-sized European cities, and for 
those cities this paper’s insights will likely be relevant.  
 
A second distinct feature of Dutch cities concerns the widespread use of bicycles as a means of inner-city 
transport; for example, bicycles’ share in home-to-work commutes in Amsterdam was 48% in 2016 (KiM, 
2018). Consequently, a mode shift from cycling to automated transport could be much more pronounced in 
the Netherlands than in other countries where the modal share of the bicycle is smaller. The AV-induced 
reduction in bicycle use might still be of high importance for other countries though. At the moment, 
various European Union members carry out dedicated policies to promote cycling, and the European 
Commission works on integrating cycling into the multimodal transport policy (ECF, 2015; EC, 2018). The 
policies aim at an increase in the modal share of bicycle, and at related improvements in health, 

                                                           
21 The four largest Dutch cities (Amsterdam, Rotterdam, Utrecht and The Hague) have a combined 2.4 million inhabitants, which is comparable to the 2.2 
million inhabitants of inner Paris. However, the four Dutch cities’ population density (4,000 inhabitants per square kilometre on average) is less than 20% of 
the density of inner Paris (21,000 people/km2). Analogously, the total population of the Dutch Randstad (7.1 million) is comparable to the population of the 
Grand Paris Metropolis, yet the population density of the Randstad (850 p/km2) is only 10% of the Grand Paris density (8700 p/km2). (Statistics 
Netherlands, 2017 and OECD, 2017). 
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environment and urban quality of life. Our results suggest that realization of such policy goals may become 
more challenging in a world with automated vehicles.  Furthermore, in many cities abroad the lower 
bicycle’s smaller modal share is compensated by a larger share for public transit. From that perspective 
also, our findings pertaining to the impact of public transit automation on population concentration could 
be very relevant for medium-sized, non-bicycle oriented cities outside of the Netherlands.  
 
The transition to automated driving poses many challenges to policy, concerning such diverse topics as 
regulation, safety, infrastructure investment, space for experimentation (see e.g. KiM, 2017, Bahamonde-
Birke et al., 2017). The results of our paper are particularly interesting in light of the ongoing policy 
discussions about the growth of cities. In many developed countries, attractive cities have recently 
experienced higher growth rates than areas in the rest of the country (see e.g. Duranton and Puga, 2014, 
Gyourko et al., 2013), and this tendency towards urban concentration is expected to continue in the coming 
decades (CPB/PBL, 2015). Our simulations reveal that automation cannot be viewed as an unambiguous 
counterforce to this trend, as was thought up to now (see e.g. Litman, 2018). Rather, public transit 
automation may in fact intensify this concentration trend. Hence, policy challenges relating to the growth of 
cities will remain of vital concern, ranging from urban sprawl and investment in housing to an increasing 
segregation between those who can afford to reside in attractive, expensive cities and those who cannot. 
Automated driving in cities will also create new challenges, including for example those related to inner city 
congestion, regulation of automated vehicle flows, regulation of the market of fleet-owners, or the 
transformation of redundant parking spaces into other uses. Policy makers may have to prepare for a shift 
away from conventional public transit (except on dense metro-train lines), and for discussions pertaining to 
the changing complexion and feel of cities.  
 
The transition to fully autonomous driving may take many years. In the KiM (2017) transition paths, a fully 
self-driving city is not expected to emerge until around 2070 or beyond. The available transition time can 
therefore be used for experimentation and learning. Moreover, certain policy measures might require years 
or even decades to design and implement, with the redesign, planning and execution of infrastructural 
investments being primary examples. A further example is public transit concessions, which often span one 
or more decades. All told, automation developments may confront policy makers with a dilemma. On the 
one hand, given the large uncertainty and gradual transition to new technologies, monitoring and waiting 
might be the best policy response.  On the other, the long periods of time needed for designing and 
implementing policy stress the need for promptly initiating the necessary policy adjustments. 

7 Conclusions 
 
This paper has studied the possible effects of automated and autonomous driving on population 
concentration and dispersion in the Netherlands, using as instrument the Dutch spatial general equilibrium 
model LUCA. Two possible automation developments were accounted for: car automation, whereby 
technology enhances the travel experience in cars; and public transit automation, whereby new technology 
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leads to fast and comfortable door-to-door shared transit. We have considered scenarios in which the 
automation technology is at different levels of development.  
 
The analysis suggests that car automation results in population flight from cities. Public transit automation 
has the opposite effect: it leads to population clustering in urban areas. A combination of these two 
components results in a concentration of the population in the largest, most attractive cities, at the expense 
of smaller cities. The effects are substantial in case of full automation (level 5 SAE), where regional changes 
in population amount to some 3% in absolute value. In high automation (level 4 SAE), the effects are much 
smaller. 
 
Automation has a positive effect on welfare, amounting to yearly benefits up to 5 billion euro in full 
automation. In the first place, the welfare benefits arise from a reduction in generalized transportation costs 
and changes in modal split. A second part of the benefits is due to relocation. Following a change in 
generalized transportation costs, people move to other home and job locations that yield them higher utility. 
Land use and land prices adjust consecutively, generating additional welfare effects. In our simulations, these 
(wider) effects of automation amount to up to 10% of the total benefits. Land redevelopment is a necessary 
condition to realize these benefits, see also Teulings et al. (2018). 
 
The quantitative effects are based on simulations and therefore cannot provide a precise picture of a remote 
and highly uncertain future. Nonetheless, given that the LUCA model was calibrated according to current 
empirical data for the Netherlands, it does provide a quantitative impression of two possible consequences 
of automation, both of which are highly relevant for spatial and transport policy. Policy focused solely on the 
impact of car automation would erroneously direct policy at population dispersion, without taking into 
account the offsetting impact that automated public transit has on population concentration. 
 
This paper’s findings are particularly interesting in light of the ongoing discussions about the growth and 
decline of cities, in the past, present and future. The most influential transportation technology development 
of the last century – construction of highways – led to the suburbanization of population and jobs (see Baum-
Snow, 2007, 2010 and later studies). Vehicle automation may well be the next major transportation 
technology jump, and our simulations suggest that it could lead to further population concentration in 
already highly urbanized areas. In many developed countries this might pose additional challenges for policy 
makers on the local and national levels, because attractive cities already grow at (much) higher rates than 
other areas (see e.g. Duranton and Puga, 2014, Gyourko et al., 2013).  
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Appendix A. Main notation 
 

Table A1. Main notation 
Population  
i, i=1..N Individual workers 
N Total number of workers 
s={low, middle, high} Education level 
Ns Total number of workers of education level s 
x={k,j,m} Three discrete choices of the workers 
Residential location choice  
h∊H Residential location 
k∊ Kh x H House, at each h there are Kh houses 
Ah Residential land supply at location h 
Rh Land price at location h 
v(Rh) A function of land price at location h 
Lih Land lot consumption of individual i at location h 
Lh Average land lot at location h 
ah and zh Observed respectively unobserved home location amenities 

(parks, restaurants, culture, etc.) 
Choice of job location and commuting mode  
j∊H Job location 
ysj Job location amenities (e.g. availability of cafes or supermarkets 

near the office) 
Wi Take home pay of individual i 
m∊M Mode of transportation 
cshjm Attributes of a trip between h and j with m (time, cost, etc.) 
Parameters  
𝛼𝛼, 𝛾𝛾 Parameters indicating the utility weight of home amenities, 

respectively commuting variables 
𝜇𝜇𝐾𝐾𝐾𝐾, 𝜇𝜇𝐽𝐽𝐽𝐽, 𝜇𝜇𝑀𝑀𝑀𝑀 Parameters connected to the nested logit structure of the model 
𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  Gumbel distributed error term that supports the nested logit 

structure 
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Tables 
 

Table 1. Six scenarios 
 High automation (1) Full automation (2) 
Public Transit 
component  

PT1 
Faster PT trips, lower access, egress and 
waiting times 

PT2 
Fully autonomous SAV, door-to-door 
mobility service 

   
Car component CAR1 

Hands off the wheel outside city, enhanced 
travel experience in extra-urban situations 
 

CAR2 
Fully autonomous PAV, enhanced 
travel experience all trips 

COMBI  COMBI1 = PT1 + CAR1 COMBI2 = PT2 + CAR2 
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Table 2. Welfare effect calculation 
Effect Expression 
Transportation improvement only W𝑠𝑠𝜇𝜇𝐾𝐾𝐾𝐾𝜇𝜇𝐽𝐽𝐽𝐽𝜇𝜇𝑀𝑀𝑀𝑀 ∑ ∑ Pr[ℎ𝑗𝑗|𝑠𝑠]𝑗𝑗∈𝐻𝐻ℎ∈𝐻𝐻 𝛾𝛾𝑠𝑠 (𝑐𝑐𝑠𝑠ℎ𝑗𝑗𝑛𝑛 − 𝑐𝑐𝑠𝑠ℎ𝑗𝑗𝑜𝑜 )  
Total effect including relocation of population and jobs W𝑠𝑠𝜇𝜇𝐾𝐾𝐾𝐾(𝑣𝑣𝑠𝑠𝑛𝑛 − 𝑣𝑣𝑠𝑠𝑜𝑜)  
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Table 3. Parameters modal split 
Panel A: General variables Coef t-val       
Cost in % of net wage -12.24 (8.6)       
Time (minutes/10) -0.26 (20.0)       
         
Panel B: Alternative specific 
variables 

Cara  
 

 Train  Bus  Bike  

 Coef t-val coef t-val Coef t-val coef t-val 
Δ time in vehicle (minutes/10) -- -- 0.18 (15.5) 0.07 (5.6) -0.19 (13.7) 
Δ time out of vehicle (minutes/10) -- -- 0.00 (0.0) -0.15 (4.8) -- -- 
         
Intercept -- -- -1.57 (14.7) 0.03 (0.3) 0.62 (19.2) 
Δ intercept high educated -- -- 0.58 (11.6) -0.00 (0.1) 0.53 (16.9) 
Δ intercept low educated -- -- -0.48 (6.7) 0.01 (0.1) -0.11 (3.4) 
Parking cost at homeb -4.18 (15.8) -- -- -- -- -- -- 
Parking cost at jobb -2.54 (18.0) -- -- -- -- -- -- 
Access distance train (km/10) -- -- -0.40 (9.7) -- -- -- -- 
Egress distance train (km/10) -- -- -0.52 (7.8) -- -- -- -- 
Urbanization at home location -- -- -- -- 0.26 (15.2) -- -- 
Urbanization at job location -- -- -- -- 0.29 (17.0) -- -- 

a Car mode is taken as a reference. So the coefficient by time in a car is equal to the general coefficient by time 
reported in panel A of the table; the intercept (mode-specific constant) for a car is set to zero. Coefficients by time in 
other modes can be calculated as a sum of the time coefficient in panel A and Δ time coefficients in panel B. Idem for 
the mode intercepts. 
b Measured as land rent divided by the wage income, in %.       
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 Table 4. Implied values of time (euro/hour) 
Education Low middle high 
Car time 12 14 19 
In-vehicle time train 4 5 6 
Out-of-vehicle time train 12 14 19 
In-vehicle time bus 9 10 14 
Out-of-vehicle time bus 18 22 29 

 
                            



30 
 

                         Table 5. Parameters home location choice 
Education level Low a  Middle  High a  
Variable coef t-val coef t-val Coef t-val 
(transport) accessibility of jobsb 0.63 (10.6) 0.44 (7.4) 0.42 (6.7) 
(transformed) land rent 9.77  6.80 (21.4) 4.37  
       
# monuments 1km/1000 0.26  0.40 (9.2) 0.32  
# monuments 1-5km/1000 0.07  0.09 (7.7) 0.11  
share nature within 5km 0.07  -0.02 (0.6) 0.32  
dum. university in 10km -0.07  -0.07 (3.3) 0.07  
# restaurants 1km/100 0.09  0.44 (7.4) 0.54  
# restaurants 1-5km/100) 0.11  0.05 (5.2) 0.03  

a The parameters reported without a t-value have been computed using the two-step approach as in Bayer et al. 
(2007), see Teulings et al. (2018) for the details. 
b This variable is defined in equation (6); it contains the transport logsum (4), computed using the coefficients from 
Table 3.  
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Table 6. Parameters scenarios in LUCA 
 High automation Full automation, mobility as a service 
Public transit automation PT-1 PT-2 
In-vehicle travel time 
bus/tram/metro22 

unchanged set to 1.2 times the current travel time 
of the car 

Out-of-vehicle travel time 
bus/tram/metro 

reduced by 20% set to 0 

Access / egress train reduced by 20% reduced by 50% 
   
Car transport automation CAR-1 CAR-2 
Coefficient on travel time of the 
car 

set to 0.95 times the current  
coefficient, for trips longer 
than 15 km 

set to 0.8 times the current  
coefficient, for trips longer than 5 km 

which reduces the perceived cost 
of time in a car (VOT in a car) by 

5%, for trips longer than 15 
km 

20%, for trips longer than 5 km 

   
COMBI  COMBI-1 = PT-1 + CAR-1 COMBI-2 = PT-2 + CAR-2 

 

                                                           
22 The adjustments in the bus/tram/metro travel times apply to all trips and not only the first/last mile. 
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Table 7. Percentage change in home-job distance. 
High automation Full automation 

PT-1 CAR-1 COMBI-1 PT-2 CAR-2 COMBI-2 
      

0.7% 4.2% 4.8% 15.1% 16.8% 27.1% 
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Table 8. Welfare effects 
in bln euro, yearly effects 

           High automation  Full automation 
 PT-1 CAR-1 COMBI-1  PT-2 CAR-2 COMBI-2 
Transport benefits (i) 0.25 0.50 0.74  3.02 2.70 5.14 
Relocation benefits (ii) 0.01 0.01 0.02  0.33 0.22 0.61 
Total benefits: (i) + (ii) 0.26 0.51 0.76  3.35 2.92 5.75 
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Table 9. Parameters used in the sensitivity checks 
 Sensitivity check (i) Sensitivity check (ii) 
Public transit automation PT-2a PT-2 
In-vehicle travel time bus/tram/metro set to 1.5 times car travel 

time  
set to 1.2 times car travel time  

Out-of-vehicle travel time 
bus/tram/metro 

set to 0 set to 0 

Access / egress train reduced by 50% reduced by 50% 
   
Car transport automation CAR-2 CAR-2a 
Coefficient on travel time of the car set to 0.8 times the 

current coefficient, for 
trips longer than 5km 

For highly skilled set to 0.8 times the 
current coefficient; for other skill 
levels set to 0.9 times the current 
coefficient. For all skill levels VOT 
reduction for trips longer than 5km 
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Figures 
 
 

Figure 1. Schematic representation of LUCA 

         
 



36 
 

Figure 2. Regional division of the Netherlands 

                                                                             
 

Randstad 
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Figure 3. Modal split by scenario, Netherlands and four largest cities 
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Figure 4. Population changes by region. 
High automation 

 
 

Full automation 
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Figure 5. Population changes by zip code (in %).  
High automation 

        PT-1                                  CAR-1    COMBI-1 
 

      
 

 
Full automation 

      PT-2                                  CAR-2    COMBI-2 
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Figure 6. Population changes by region. Sensitivity analysis.  
Full automation 
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